AVL树

前言

AVL树,也叫平衡二叉树,是一种二叉排序树,其中每一个结点的左子树和右子树的高度差至多等于1。同时,将二叉树上结点的左子树深度减去右子树深度的值称为平衡因子BF,还将距离插入结点最近的且平衡因子的绝对值大于1的结点为根的子树,称为最小不平衡子树
Alt text
如图:一为一个不平衡二叉排序树,显然时间复杂度较大,二为改进后的平衡二叉树,而在改进的过程中,最重要的就是通过平衡因子来判断是进行左旋还是右旋,如右旋,新增一个节点N后,平衡被打破,需要平衡因子2大于0,需要右旋,就是将其左子树作为根结点,左子树的右子树作为原根结点的左子树,这样做的原因就是根据二叉排序树的左右子树特点来的,很容易想明白

模拟平衡二叉树

不妨构造一个a[10]={3,2,1,4,5,6,7,10,9,8};
Alt text
大概过程如图所示,其中最重要的就是平衡因子的判断,如果是同号,且绝对值大于1的话,就要做相应的旋转操作,如果是不同号的话,就要通过旋转先转换成同号,在做操作

左右旋操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
typedef struct BiTNode
{
int data;
int bf;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
//左旋处理
void R_Rotate(BiTree *p){
BiTree L;
L=(*p)->lchild; //L指向p的左子树根结点
(*p)->lchild=L->rchild; //L的右子树挂接为p的左子树
L->rchild=(*p);
*p=L; //p指向新的根结点
}
//右旋处理
void L_Ronate(BiTree *p)
{
BiTree R;
R=(*p)->rchild; //R指向p的右子树根结点
(*p)->rchild=R->lchild; //R的左子树挂接为P的右子树
R->lchild=(*p);
*p=R; //p指向新的根结点
}

可以通过之前的图来对比看,其实质也就是交互根结点位置和挂接新左右子树

左右平衡旋转

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#define LH +1 /* 左高 */
#define EH 0 /* 等高 */
#define RH -1 /* 右高 */
/* 对以指针T所指结点为根的二叉树作左平衡旋转处理 */
/* 本算法结束时,指针T指向新的根结点 */
void LeftBalance(BiTree *T)
{
BiTree L,Lr;
L=(*T)->lchild; /* L指向T的左子树根结点 */
switch(L->bf)
{ /* 检查T的左子树的平衡度,并作相应平衡处理 */
case LH: /* 新结点插入在T的左孩子的左子树上,要作单右旋处理 */
(*T)->bf=L->bf=EH;
R_Rotate(T);
break;
case RH: /* 新结点插入在T的左孩子的右子树上,要作双旋处理 */
Lr=L->rchild; /* Lr指向T的左孩子的右子树根 */
switch(Lr->bf)
{ /* 修改T及其左孩子的平衡因子 */
case LH: (*T)->bf=RH;
L->bf=EH;
break;
case EH: (*T)->bf=L->bf=EH;
break;
case RH: (*T)->bf=EH;
L->bf=LH;
break;
}
Lr->bf=EH;
L_Rotate(&(*T)->lchild); /* 对T的左子树作左旋平衡处理 */
R_Rotate(T); /* 对T作右旋平衡处理 */
}
}
/* 对以指针T所指结点为根的二叉树作右平衡旋转处理, */
/* 本算法结束时,指针T指向新的根结点 */
void RightBalance(BiTree *T)
{
BiTree R,Rl;
R=(*T)->rchild; /* R指向T的右子树根结点 */
switch(R->bf)
{ /* 检查T的右子树的平衡度,并作相应平衡处理 */
case RH: /* 新结点插入在T的右孩子的右子树上,要作单左旋处理 */
(*T)->bf=R->bf=EH;
L_Rotate(T);
break;
case LH: /* 新结点插入在T的右孩子的左子树上,要作双旋处理 */
Rl=R->lchild; /* Rl指向T的右孩子的左子树根 */
switch(Rl->bf)
{ /* 修改T及其右孩子的平衡因子 */
case RH: (*T)->bf=LH;
R->bf=EH;
break;
case EH: (*T)->bf=R->bf=EH;
break;
case LH: (*T)->bf=EH;
R->bf=RH;
break;
}
Rl->bf=EH;
R_Rotate(&(*T)->rchild); /* 对T的右子树作右旋平衡处理 */
L_Rotate(T); /* 对T作左旋平衡处理 */
}
}

插入与主函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/* 若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个 */
/* 数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 */
/* 失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。 */
Status InsertAVL(BiTree *T,int e,Status *taller)
{
if(!*T)
{ /* 插入新结点,树“长高”,置taller为TRUE */
*T=(BiTree)malloc(sizeof(BiTNode));
(*T)->data=e; (*T)->lchild=(*T)->rchild=NULL; (*T)->bf=EH;
*taller=TRUE;
}
else
{
if (e==(*T)->data)
{ /* 树中已存在和e有相同关键字的结点则不再插入 */
*taller=FALSE; return FALSE;
}
if (e<(*T)->data)
{ /* 应继续在T的左子树中进行搜索 */
if(!InsertAVL(&(*T)->lchild,e,taller)) /* 未插入 */
return FALSE;
if(taller) /* 已插入到T的左子树中且左子树“长高” */
switch((*T)->bf) /* 检查T的平衡度 */
{
case LH: /* 原本左子树比右子树高,需要作左平衡处理 */
LeftBalance(T); *taller=FALSE; break;
case EH: /* 原本左、右子树等高,现因左子树增高而使树增高 */
(*T)->bf=LH; *taller=TRUE; break;
case RH: /* 原本右子树比左子树高,现左、右子树等高 */
(*T)->bf=EH; *taller=FALSE; break;
}
}
else
{ /* 应继续在T的右子树中进行搜索 */
if(!InsertAVL(&(*T)->rchild,e,taller)) /* 未插入 */
return FALSE;
if(*taller) /* 已插入到T的右子树且右子树“长高” */
switch((*T)->bf) /* 检查T的平衡度 */
{
case LH: /* 原本左子树比右子树高,现左、右子树等高 */
(*T)->bf=EH; *taller=FALSE; break;
case EH: /* 原本左、右子树等高,现因右子树增高而使树增高 */
(*T)->bf=RH; *taller=TRUE; break;
case RH: /* 原本右子树比左子树高,需要作右平衡处理 */
RightBalance(T); *taller=FALSE; break;
}
}
}
return TRUE;
}
int main(void)
{
int i;
int a[10]={3,2,1,4,5,6,7,10,9,8};
BiTree T=NULL;
Status taller;
for(i=0;i<10;i++)
{
InsertAVL(&T,a[i],&taller);
}
return 0;
}

最后不得不说,AVL树是在是太复杂了,但是其思想是在是太精妙了,它克服了二叉排序树在查找效率上的不足,通过在插入数据时,就将其变成一个平衡二叉树,从而使其时间复杂度为O(logn)

热评文章